// A C++ program to check if a given graph is Eulerian or not
#include<iostream>
#include <list>
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
public:
// Constructor and destructor
Graph(int V) {this->V = V; adj = new list<int>[V]; }
~Graph() { delete [] adj; } // To avoid memory leak
// function to add an edge to graph
void addEdge(int v, int w);
// Method to check if this graph is Eulerian or not
int isEulerian();
// Method to check if all non-zero degree vertices are connected
bool isConnected();
// Function to do DFS starting from v. Used in isConnected();
void DFSUtil(int v, bool visited[]);
};
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// Method to check if all non-zero degree vertices are connected.
// It mainly does DFS traversal starting from
bool Graph::isConnected()
{
// Mark all the vertices as not visited
bool visited[V];
int i;
for (i = 0; i < V; i++)
visited[i] = false;
// Find a vertex with non-zero degree
for (i = 0; i < V; i++)
if (adj[i].size() != 0)
break;
// If there are no edges in the graph, return true
if (i == V)
return true;
// Start DFS traversal from a vertex with non-zero degree
DFSUtil(i, visited);
// Check if all non-zero degree vertices are visited
for (i = 0; i < V; i++)
if (visited[i] == false && adj[i].size() > 0)
return false;
return true;
}
/* The function returns one of the following values
0 --> If grpah is not Eulerian
1 --> If graph has an Euler path (Semi-Eulerian)
2 --> If graph has an Euler Circuit (Eulerian) */
int Graph::isEulerian()
{
// Check if all non-zero degree vertices are connected
if (isConnected() == false)
return 0;
// Count vertices with odd degree
int odd = 0;
for (int i = 0; i < V; i++)
if (adj[i].size() & 1)
odd++;
// If count is more than 2, then graph is not Eulerian
if (odd > 2)
return 0;
// If odd count is 2, then semi-eulerian.
// If odd count is 0, then eulerian
// Note that odd count can never be 1 for undirected graph
return (odd)? 1 : 2;
}
// Function to run test cases
void test(Graph &g)
{
int res = g.isEulerian();
if (res == 0)
cout << "Graph is not Eulerian\n";
else if (res == 1)
cout << "Graph has a Euler path\n";
else
cout << "Graph has a Euler cycle\n";
}
// Driver program to test above function
int main()
{
// Let us create and test graphs shown in above figures
Graph g1(5);
g1.addEdge(4, 3);
g1.addEdge(3, 0);
g1.addEdge(0, 1);
g1.addEdge(1, 2);
g1.addEdge(2, 0);
test(g1);
Graph g2(5);
g2.addEdge(2, 1);
g2.addEdge(1, 0);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(4, 0);
g2.addEdge(0, 2);
test(g2);
Graph g3(5);
g3.addEdge(1, 0);
g3.addEdge(0, 2);
g3.addEdge(2, 1);
g3.addEdge(0, 3);
g3.addEdge(3, 4);
g3.addEdge(1, 3);
test(g3);
// Let us create a graph with all vertices
// with zero degree
/*Graph g4(3);
test(g4);*/
system("PAUSE");
return 0;
}
0 comentarios:
Publicar un comentario